summaryrefslogtreecommitdiffstats
path: root/src/Mono.Math/BigInteger.cs
diff options
context:
space:
mode:
authorAndrew Arnott <andrewarnott@gmail.com>2012-01-29 14:32:45 -0800
committerAndrew Arnott <andrewarnott@gmail.com>2012-01-29 14:32:45 -0800
commit5fec515095ee10b522f414a03e78f282aaf520dc (patch)
tree204c75486639c23cdda2ef38b34d7e5050a1a2e3 /src/Mono.Math/BigInteger.cs
parentf1a4155398635a4fd9f485eec817152627682704 (diff)
parent8f4165ee515728aca3faaa26e8354a40612e85e4 (diff)
downloadDotNetOpenAuth-5fec515095ee10b522f414a03e78f282aaf520dc.zip
DotNetOpenAuth-5fec515095ee10b522f414a03e78f282aaf520dc.tar.gz
DotNetOpenAuth-5fec515095ee10b522f414a03e78f282aaf520dc.tar.bz2
Merge branch 'splitDlls'.
DNOA now builds and (in some cases) ships as many distinct assemblies.
Diffstat (limited to 'src/Mono.Math/BigInteger.cs')
-rw-r--r--src/Mono.Math/BigInteger.cs2241
1 files changed, 2241 insertions, 0 deletions
diff --git a/src/Mono.Math/BigInteger.cs b/src/Mono.Math/BigInteger.cs
new file mode 100644
index 0000000..33df8df
--- /dev/null
+++ b/src/Mono.Math/BigInteger.cs
@@ -0,0 +1,2241 @@
+// <auto-generated />
+
+//
+// BigInteger.cs - Big Integer implementation
+//
+// Authors:
+// Ben Maurer
+// Chew Keong TAN
+// Sebastien Pouliot (spouliot@motus.com)
+//
+// Copyright (c) 2003 Ben Maurer
+// All rights reserved
+//
+// Copyright (c) 2002 Chew Keong TAN
+// All rights reserved.
+//
+// Modified 2007 Andrew Arnott (http://blog.nerdbank.net)
+// Rewrote unsafe code as safe code.
+
+using System;
+using System.Security.Cryptography;
+using Mono.Math.Prime;
+using Mono.Math.Prime.Generator;
+
+namespace Mono.Math {
+
+ internal class BigInteger {
+
+ #region Data Storage
+
+ /// <summary>
+ /// The Length of this BigInteger
+ /// </summary>
+ uint length = 1;
+
+ /// <summary>
+ /// The data for this BigInteger
+ /// </summary>
+ uint [] data;
+
+ #endregion
+
+ #region Constants
+
+ /// <summary>
+ /// Default length of a BigInteger in bytes
+ /// </summary>
+ const uint DEFAULT_LEN = 20;
+
+ /// <summary>
+ /// Table of primes below 2000.
+ /// </summary>
+ /// <remarks>
+ /// <para>
+ /// This table was generated using Mathematica 4.1 using the following function:
+ /// </para>
+ /// <para>
+ /// <code>
+ /// PrimeTable [x_] := Prime [Range [1, PrimePi [x]]]
+ /// PrimeTable [6000]
+ /// </code>
+ /// </para>
+ /// </remarks>
+ public static readonly uint [] smallPrimes = {
+ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
+ 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
+ 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
+ 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
+ 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419,
+ 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
+ 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
+ 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
+ 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
+ 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
+ 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
+
+ 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
+ 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181,
+ 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279,
+ 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373,
+ 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471,
+ 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
+ 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637,
+ 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747,
+ 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867,
+ 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973,
+ 1979, 1987, 1993, 1997, 1999,
+
+ 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089,
+ 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207,
+ 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
+ 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389,
+ 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503,
+ 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621,
+ 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707,
+ 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797,
+ 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
+ 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
+
+ 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109,
+ 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
+ 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329,
+ 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449,
+ 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539,
+ 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631,
+ 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733,
+ 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
+ 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943,
+ 3947, 3967, 3989,
+
+ 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091,
+ 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211,
+ 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289,
+ 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,
+ 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523,
+ 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649,
+ 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759,
+ 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
+ 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987,
+ 4993, 4999,
+
+ 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101,
+ 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231,
+ 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351,
+ 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449,
+ 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563,
+ 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669,
+ 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791,
+ 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869,
+ 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987
+ };
+
+ public enum Sign : int {
+ Negative = -1,
+ Zero = 0,
+ Positive = 1
+ };
+
+ #region Exception Messages
+ const string WouldReturnNegVal = "Operation would return a negative value";
+ #endregion
+
+ #endregion
+
+ #region Constructors
+
+ public BigInteger ()
+ {
+ data = new uint [DEFAULT_LEN];
+ }
+ public BigInteger (Sign sign, uint len)
+ {
+ this.data = new uint [len];
+ this.length = len;
+ }
+
+ public BigInteger (BigInteger bi)
+ {
+ this.data = (uint [])bi.data.Clone ();
+ this.length = bi.length;
+ }
+
+ public BigInteger (BigInteger bi, uint len)
+ {
+
+ this.data = new uint [len];
+
+ for (uint i = 0; i < bi.length; i++)
+ this.data [i] = bi.data [i];
+
+ this.length = bi.length;
+ }
+
+ #endregion
+
+ public static BigInteger Parse(string number) {
+ if (number == null)
+ throw new ArgumentNullException(number);
+ int i = 0, len = number.Length;
+ char c;
+ bool digits_seen = false;
+ BigInteger val = new BigInteger(0);
+ if (number[i] == '+') {
+ i++;
+ } else if(number[i] == '-') {
+ throw new FormatException("Only positive integers are allowed.");
+ }
+ for(; i < len; i++) {
+ c = number[i];
+ if (c == '\0') {
+ i = len;
+ continue;
+ }
+ if (c >= '0' && c <= '9'){
+ val = val * 10 + (c - '0');
+ digits_seen = true;
+ } else {
+ if (Char.IsWhiteSpace(c)){
+ for (i++; i < len; i++){
+ if (!Char.IsWhiteSpace (number[i]))
+ throw new FormatException();
+ }
+ break;
+ } else
+ throw new FormatException();
+ }
+ }
+ if (!digits_seen)
+ throw new FormatException();
+ return val;
+ }
+
+ #region Conversions
+
+ public BigInteger (byte [] inData)
+ {
+ length = (uint)inData.Length >> 2;
+ int leftOver = inData.Length & 0x3;
+
+ // length not multiples of 4
+ if (leftOver != 0) length++;
+
+ data = new uint [length];
+
+ for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++) {
+ data [j] = (uint)(
+ (inData [i-3] << (3*8)) |
+ (inData [i-2] << (2*8)) |
+ (inData [i-1] << (1*8)) |
+ (inData [i-0] << (0*8))
+ );
+ }
+
+ switch (leftOver) {
+ case 1: data [length-1] = (uint)inData [0]; break;
+ case 2: data [length-1] = (uint)((inData [0] << 8) | inData [1]); break;
+ case 3: data [length-1] = (uint)((inData [0] << 16) | (inData [1] << 8) | inData [2]); break;
+ }
+
+ this.Normalize ();
+ }
+
+ public BigInteger (uint [] inData)
+ {
+ length = (uint)inData.Length;
+
+ data = new uint [length];
+
+ for (int i = (int)length - 1, j = 0; i >= 0; i--, j++)
+ data [j] = inData [i];
+
+ this.Normalize ();
+ }
+
+ public BigInteger (uint ui)
+ {
+ data = new uint [] {ui};
+ }
+
+ public BigInteger (ulong ul)
+ {
+ data = new uint [2] { (uint)ul, (uint)(ul >> 32)};
+ length = 2;
+
+ this.Normalize ();
+ }
+
+ public static implicit operator BigInteger (uint value)
+ {
+ return (new BigInteger (value));
+ }
+
+ public static implicit operator BigInteger (int value)
+ {
+ if (value < 0) throw new ArgumentOutOfRangeException ("value");
+ return (new BigInteger ((uint)value));
+ }
+
+ public static implicit operator BigInteger (ulong value)
+ {
+ return (new BigInteger (value));
+ }
+
+ #endregion
+
+ #region Operators
+
+ public static BigInteger operator + (BigInteger bi1, BigInteger bi2)
+ {
+ if (bi1 == 0)
+ return new BigInteger (bi2);
+ else if (bi2 == 0)
+ return new BigInteger (bi1);
+ else
+ return Kernel.AddSameSign (bi1, bi2);
+ }
+
+ public static BigInteger operator - (BigInteger bi1, BigInteger bi2)
+ {
+ if (bi2 == 0)
+ return new BigInteger (bi1);
+
+ if (bi1 == 0)
+ throw new ArithmeticException (WouldReturnNegVal);
+
+ switch (Kernel.Compare (bi1, bi2)) {
+
+ case Sign.Zero:
+ return 0;
+
+ case Sign.Positive:
+ return Kernel.Subtract (bi1, bi2);
+
+ case Sign.Negative:
+ throw new ArithmeticException (WouldReturnNegVal);
+ default:
+ throw new InvalidOperationException ();
+ }
+ }
+
+ public static int operator % (BigInteger bi, int i)
+ {
+ if (i > 0)
+ return (int)Kernel.DwordMod (bi, (uint)i);
+ else
+ return -(int)Kernel.DwordMod (bi, (uint)-i);
+ }
+
+ public static uint operator % (BigInteger bi, uint ui)
+ {
+ return Kernel.DwordMod (bi, (uint)ui);
+ }
+
+ public static BigInteger operator % (BigInteger bi1, BigInteger bi2)
+ {
+ return Kernel.multiByteDivide (bi1, bi2)[1];
+ }
+
+ public static BigInteger operator / (BigInteger bi, int i)
+ {
+ if (i > 0)
+ return Kernel.DwordDiv (bi, (uint)i);
+
+ throw new ArithmeticException (WouldReturnNegVal);
+ }
+
+ public static BigInteger operator / (BigInteger bi1, BigInteger bi2)
+ {
+ return Kernel.multiByteDivide (bi1, bi2)[0];
+ }
+
+ public static BigInteger operator * (BigInteger bi1, BigInteger bi2)
+ {
+ if (bi1 == 0 || bi2 == 0) return 0;
+
+ //
+ // Validate pointers
+ //
+ if (bi1.data.Length < bi1.length) throw new IndexOutOfRangeException ("bi1 out of range");
+ if (bi2.data.Length < bi2.length) throw new IndexOutOfRangeException ("bi2 out of range");
+
+ BigInteger ret = new BigInteger (Sign.Positive, bi1.length + bi2.length);
+
+ Kernel.Multiply (bi1.data, 0, bi1.length, bi2.data, 0, bi2.length, ret.data, 0);
+
+ ret.Normalize ();
+ return ret;
+ }
+
+ public static BigInteger operator * (BigInteger bi, int i)
+ {
+ if (i < 0) throw new ArithmeticException (WouldReturnNegVal);
+ if (i == 0) return 0;
+ if (i == 1) return new BigInteger (bi);
+
+ return Kernel.MultiplyByDword (bi, (uint)i);
+ }
+
+ public static BigInteger operator << (BigInteger bi1, int shiftVal)
+ {
+ return Kernel.LeftShift (bi1, shiftVal);
+ }
+
+ public static BigInteger operator >> (BigInteger bi1, int shiftVal)
+ {
+ return Kernel.RightShift (bi1, shiftVal);
+ }
+
+ #endregion
+
+ #region Random
+ private static RandomNumberGenerator rng;
+ private static RandomNumberGenerator Rng {
+ get {
+ if (rng == null)
+ rng = RandomNumberGenerator.Create ();
+ return rng;
+ }
+ }
+
+ /// <summary>
+ /// Generates a new, random BigInteger of the specified length.
+ /// </summary>
+ /// <param name="bits">The number of bits for the new number.</param>
+ /// <param name="rng">A random number generator to use to obtain the bits.</param>
+ /// <returns>A random number of the specified length.</returns>
+ public static BigInteger genRandom (int bits, RandomNumberGenerator rng)
+ {
+ int dwords = bits >> 5;
+ int remBits = bits & 0x1F;
+
+ if (remBits != 0)
+ dwords++;
+
+ BigInteger ret = new BigInteger (Sign.Positive, (uint)dwords + 1);
+ byte [] random = new byte [dwords << 2];
+
+ rng.GetBytes (random);
+ Buffer.BlockCopy (random, 0, ret.data, 0, (int)dwords << 2);
+
+ if (remBits != 0) {
+ uint mask = (uint)(0x01 << (remBits-1));
+ ret.data [dwords-1] |= mask;
+
+ mask = (uint)(0xFFFFFFFF >> (32 - remBits));
+ ret.data [dwords-1] &= mask;
+ }
+ else
+ ret.data [dwords-1] |= 0x80000000;
+
+ ret.Normalize ();
+ return ret;
+ }
+
+ /// <summary>
+ /// Generates a new, random BigInteger of the specified length using the default RNG crypto service provider.
+ /// </summary>
+ /// <param name="bits">The number of bits for the new number.</param>
+ /// <returns>A random number of the specified length.</returns>
+ public static BigInteger genRandom (int bits)
+ {
+ return genRandom (bits, Rng);
+ }
+
+ /// <summary>
+ /// Randomizes the bits in "this" from the specified RNG.
+ /// </summary>
+ /// <param name="rng">A RNG.</param>
+ public void randomize (RandomNumberGenerator rng)
+ {
+ int bits = this.bitCount ();
+ int dwords = bits >> 5;
+ int remBits = bits & 0x1F;
+
+ if (remBits != 0)
+ dwords++;
+
+ byte [] random = new byte [dwords << 2];
+
+ rng.GetBytes (random);
+ Buffer.BlockCopy (random, 0, data, 0, (int)dwords << 2);
+
+ if (remBits != 0) {
+ uint mask = (uint)(0x01 << (remBits-1));
+ data [dwords-1] |= mask;
+
+ mask = (uint)(0xFFFFFFFF >> (32 - remBits));
+ data [dwords-1] &= mask;
+ }
+
+ else
+ data [dwords-1] |= 0x80000000;
+
+ Normalize ();
+ }
+
+ /// <summary>
+ /// Randomizes the bits in "this" from the default RNG.
+ /// </summary>
+ public void randomize ()
+ {
+ randomize (Rng);
+ }
+
+ #endregion
+
+ #region Bitwise
+
+ public int bitCount ()
+ {
+ this.Normalize ();
+
+ uint value = data [length - 1];
+ uint mask = 0x80000000;
+ uint bits = 32;
+
+ while (bits > 0 && (value & mask) == 0) {
+ bits--;
+ mask >>= 1;
+ }
+ bits += ((length - 1) << 5);
+
+ return (int)bits;
+ }
+
+ /// <summary>
+ /// Tests if the specified bit is 1.
+ /// </summary>
+ /// <param name="bitNum">The bit to test. The least significant bit is 0.</param>
+ /// <returns>True if bitNum is set to 1, else false.</returns>
+ public bool testBit (uint bitNum)
+ {
+ uint bytePos = bitNum >> 5; // divide by 32
+ byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits
+
+ uint mask = (uint)1 << bitPos;
+ return ((this.data [bytePos] & mask) != 0);
+ }
+
+ public bool testBit (int bitNum)
+ {
+ if (bitNum < 0) throw new ArgumentOutOfRangeException ("bitNum");
+
+ uint bytePos = (uint)bitNum >> 5; // divide by 32
+ byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits
+
+ uint mask = (uint)1 << bitPos;
+ return ((this.data [bytePos] | mask) == this.data [bytePos]);
+ }
+
+ public void setBit (uint bitNum)
+ {
+ setBit (bitNum, true);
+ }
+ public void clearBit (uint bitNum)
+ {
+ setBit (bitNum, false);
+ }
+
+ public void setBit (uint bitNum, bool val)
+ {
+ uint bytePos = bitNum >> 5; // divide by 32
+
+ if (bytePos < this.length) {
+ uint mask = (uint)1 << (int)(bitNum & 0x1F);
+ if (val)
+ this.data [bytePos] |= mask;
+ else
+ this.data [bytePos] &= ~mask;
+ }
+ }
+
+ public int LowestSetBit ()
+ {
+ if (this == 0) return -1;
+ int i = 0;
+ while (!testBit (i)) i++;
+ return i;
+ }
+
+ public byte [] getBytes ()
+ {
+ if (this == 0) return new byte [1];
+
+ int numBits = bitCount ();
+ int numBytes = numBits >> 3;
+ if ((numBits & 0x7) != 0)
+ numBytes++;
+
+ byte [] result = new byte [numBytes];
+
+ int numBytesInWord = numBytes & 0x3;
+ if (numBytesInWord == 0) numBytesInWord = 4;
+
+ int pos = 0;
+ for (int i = (int)length - 1; i >= 0; i--) {
+ uint val = data [i];
+ for (int j = numBytesInWord - 1; j >= 0; j--) {
+ result [pos+j] = (byte)(val & 0xFF);
+ val >>= 8;
+ }
+ pos += numBytesInWord;
+ numBytesInWord = 4;
+ }
+ return result;
+ }
+
+ #endregion
+
+ #region Compare
+
+ public static bool operator == (BigInteger bi1, uint ui)
+ {
+ if (bi1.length != 1) bi1.Normalize ();
+ return bi1.length == 1 && bi1.data [0] == ui;
+ }
+
+ public static bool operator != (BigInteger bi1, uint ui)
+ {
+ if (bi1.length != 1) bi1.Normalize ();
+ return !(bi1.length == 1 && bi1.data [0] == ui);
+ }
+
+ public static bool operator == (BigInteger bi1, BigInteger bi2)
+ {
+ // we need to compare with null
+ if ((bi1 as object) == (bi2 as object))
+ return true;
+ if (null == bi1 || null == bi2)
+ return false;
+ return Kernel.Compare (bi1, bi2) == 0;
+ }
+
+ public static bool operator != (BigInteger bi1, BigInteger bi2)
+ {
+ // we need to compare with null
+ if ((bi1 as object) == (bi2 as object))
+ return false;
+ if (null == bi1 || null == bi2)
+ return true;
+ return Kernel.Compare (bi1, bi2) != 0;
+ }
+
+ public static bool operator > (BigInteger bi1, BigInteger bi2)
+ {
+ return Kernel.Compare (bi1, bi2) > 0;
+ }
+
+ public static bool operator < (BigInteger bi1, BigInteger bi2)
+ {
+ return Kernel.Compare (bi1, bi2) < 0;
+ }
+
+ public static bool operator >= (BigInteger bi1, BigInteger bi2)
+ {
+ return Kernel.Compare (bi1, bi2) >= 0;
+ }
+
+ public static bool operator <= (BigInteger bi1, BigInteger bi2)
+ {
+ return Kernel.Compare (bi1, bi2) <= 0;
+ }
+
+ public Sign Compare (BigInteger bi)
+ {
+ return Kernel.Compare (this, bi);
+ }
+
+ #endregion
+
+ #region Formatting
+
+ public string ToString (uint radix)
+ {
+ return ToString (radix, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ");
+ }
+
+ public string ToString (uint radix, string charSet)
+ {
+ if (charSet.Length < radix)
+ throw new ArgumentException ("charSet length less than radix", "charSet");
+ if (radix == 1)
+ throw new ArgumentException ("There is no such thing as radix one notation", "radix");
+
+ if (this == 0) return "0";
+ if (this == 1) return "1";
+
+ string result = "";
+
+ BigInteger a = new BigInteger (this);
+
+ while (a != 0) {
+ uint rem = Kernel.SingleByteDivideInPlace (a, radix);
+ result = charSet [ (int)rem] + result;
+ }
+
+ return result;
+ }
+
+ #endregion
+
+ #region Misc
+
+ /// <summary>
+ /// Normalizes this by setting the length to the actual number of
+ /// uints used in data and by setting the sign to Sign.Zero if the
+ /// value of this is 0.
+ /// </summary>
+ private void Normalize ()
+ {
+ // Normalize length
+ while (length > 0 && data [length-1] == 0) length--;
+
+ // Check for zero
+ if (length == 0)
+ length++;
+ }
+
+ public void Clear ()
+ {
+ for (int i=0; i < length; i++)
+ data [i] = 0x00;
+ }
+
+ #endregion
+
+ #region Object Impl
+
+ public override int GetHashCode ()
+ {
+ uint val = 0;
+
+ for (uint i = 0; i < this.length; i++)
+ val ^= this.data [i];
+
+ return (int)val;
+ }
+
+ public override string ToString ()
+ {
+ return ToString (10);
+ }
+
+ public override bool Equals (object o)
+ {
+ if (o == null) return false;
+ if (o is int) return (int)o >= 0 && this == (uint)o;
+
+ return Kernel.Compare (this, (BigInteger)o) == 0;
+ }
+
+ #endregion
+
+ #region Number Theory
+
+ public BigInteger gcd (BigInteger bi)
+ {
+ return Kernel.gcd (this, bi);
+ }
+
+ public BigInteger modInverse (BigInteger mod)
+ {
+ return Kernel.modInverse (this, mod);
+ }
+
+ public BigInteger modPow (BigInteger exp, BigInteger n)
+ {
+ ModulusRing mr = new ModulusRing (n);
+ return mr.Pow (this, exp);
+ }
+
+ #endregion
+
+ #region Prime Testing
+
+ public bool isProbablePrime ()
+ {
+
+ for (int p = 0; p < smallPrimes.Length; p++) {
+ if (this == smallPrimes [p])
+ return true;
+ if (this % smallPrimes [p] == 0)
+ return false;
+ }
+
+ return PrimalityTests.RabinMillerTest (this, Prime.ConfidenceFactor.Medium);
+ }
+
+ [Obsolete]
+ public bool isProbablePrime (int notUsed)
+ {
+
+ for (int p = 0; p < smallPrimes.Length; p++) {
+ if (this % smallPrimes [p] == 0)
+ return false;
+ }
+
+ return
+ PrimalityTests.SmallPrimeSppTest (this, Prime.ConfidenceFactor.Medium);
+ }
+
+ #endregion
+
+ #region Prime Number Generation
+
+ /// <summary>
+ /// Generates the smallest prime >= bi
+ /// </summary>
+ /// <param name="bi">A BigInteger</param>
+ /// <returns>The smallest prime >= bi. More mathematically, if bi is prime: bi, else Prime [PrimePi [bi] + 1].</returns>
+ public static BigInteger NextHightestPrime (BigInteger bi)
+ {
+ NextPrimeFinder npf = new NextPrimeFinder ();
+ return npf.GenerateNewPrime (0, bi);
+ }
+
+ public static BigInteger genPseudoPrime (int bits)
+ {
+ SequentialSearchPrimeGeneratorBase sspg = new SequentialSearchPrimeGeneratorBase ();
+ return sspg.GenerateNewPrime (bits);
+ }
+
+ /// <summary>
+ /// Increments this by two
+ /// </summary>
+ public void Incr2 ()
+ {
+ int i = 0;
+
+ data [0] += 2;
+
+ // If there was no carry, nothing to do
+ if (data [0] < 2) {
+
+ // Account for the first carry
+ data [++i]++;
+
+ // Keep adding until no carry
+ while (data [i++] == 0x0)
+ data [i]++;
+
+ // See if we increased the data length
+ if (length == (uint)i)
+ length++;
+ }
+ }
+
+ #endregion
+
+ public sealed class ModulusRing {
+
+ BigInteger mod, constant;
+
+ public ModulusRing (BigInteger mod)
+ {
+ this.mod = mod;
+
+ // calculate constant = b^ (2k) / m
+ uint i = mod.length << 1;
+
+ constant = new BigInteger (Sign.Positive, i + 1);
+ constant.data [i] = 0x00000001;
+
+ constant = constant / mod;
+ }
+
+ public void BarrettReduction (BigInteger x)
+ {
+ BigInteger n = mod;
+ uint k = n.length,
+ kPlusOne = k+1,
+ kMinusOne = k-1;
+
+ // x < mod, so nothing to do.
+ if (x.length < k) return;
+
+ BigInteger q3;
+
+ //
+ // Validate pointers
+ //
+ if (x.data.Length < x.length) throw new IndexOutOfRangeException ("x out of range");
+
+ // q1 = x / b^ (k-1)
+ // q2 = q1 * constant
+ // q3 = q2 / b^ (k+1), Needs to be accessed with an offset of kPlusOne
+
+ // TODO: We should the method in HAC p 604 to do this (14.45)
+ q3 = new BigInteger (Sign.Positive, x.length - kMinusOne + constant.length);
+ Kernel.Multiply (x.data, kMinusOne, x.length - kMinusOne, constant.data, 0, constant.length, q3.data, 0);
+
+ // r1 = x mod b^ (k+1)
+ // i.e. keep the lowest (k+1) words
+
+ uint lengthToCopy = (x.length > kPlusOne) ? kPlusOne : x.length;
+
+ x.length = lengthToCopy;
+ x.Normalize ();
+
+ // r2 = (q3 * n) mod b^ (k+1)
+ // partial multiplication of q3 and n
+
+ BigInteger r2 = new BigInteger (Sign.Positive, kPlusOne);
+ Kernel.MultiplyMod2p32pmod (q3.data, (int)kPlusOne, (int)q3.length - (int)kPlusOne, n.data, 0, (int)n.length, r2.data, 0, (int)kPlusOne);
+
+ r2.Normalize ();
+
+ if (r2 < x) {
+ Kernel.MinusEq (x, r2);
+ } else {
+ BigInteger val = new BigInteger (Sign.Positive, kPlusOne + 1);
+ val.data [kPlusOne] = 0x00000001;
+
+ Kernel.MinusEq (val, r2);
+ Kernel.PlusEq (x, val);
+ }
+
+ while (x >= n)
+ Kernel.MinusEq (x, n);
+ }
+
+ public BigInteger Multiply (BigInteger a, BigInteger b)
+ {
+ if (a == 0 || b == 0) return 0;
+
+ if (a.length >= mod.length << 1)
+ a %= mod;
+
+ if (b.length >= mod.length << 1)
+ b %= mod;
+
+ if (a.length >= mod.length)
+ BarrettReduction (a);
+
+ if (b.length >= mod.length)
+ BarrettReduction (b);
+
+ BigInteger ret = new BigInteger (a * b);
+ BarrettReduction (ret);
+
+ return ret;
+ }
+
+ public BigInteger Difference (BigInteger a, BigInteger b)
+ {
+ Sign cmp = Kernel.Compare (a, b);
+ BigInteger diff;
+
+ switch (cmp) {
+ case Sign.Zero:
+ return 0;
+ case Sign.Positive:
+ diff = a - b; break;
+ case Sign.Negative:
+ diff = b - a; break;
+ default:
+ throw new InvalidOperationException();
+ }
+
+ if (diff >= mod) {
+ if (diff.length >= mod.length << 1)
+ diff %= mod;
+ else
+ BarrettReduction (diff);
+ }
+ if (cmp == Sign.Negative)
+ diff = mod - diff;
+ return diff;
+ }
+
+ public BigInteger Pow (BigInteger b, BigInteger exp)
+ {
+ if ((mod.data [0] & 1) == 1) return OddPow (b, exp);
+ else return EvenPow (b, exp);
+ }
+
+ public BigInteger EvenPow (BigInteger b, BigInteger exp)
+ {
+ BigInteger resultNum = new BigInteger ((BigInteger)1, mod.length << 1);
+ BigInteger tempNum = new BigInteger (b % mod, mod.length << 1); // ensures (tempNum * tempNum) < b^ (2k)
+
+ uint totalBits = (uint)exp.bitCount ();
+
+ uint [] wkspace = new uint [mod.length << 1];
+
+ // perform squaring and multiply exponentiation
+ for (uint pos = 0; pos < totalBits; pos++) {
+ if (exp.testBit (pos)) {
+
+ Array.Clear (wkspace, 0, wkspace.Length);
+ Kernel.Multiply (resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
+ resultNum.length += tempNum.length;
+ uint [] t = wkspace;
+ wkspace = resultNum.data;
+ resultNum.data = t;
+
+ BarrettReduction (resultNum);
+ }
+
+ Kernel.SquarePositive (tempNum, ref wkspace);
+ BarrettReduction (tempNum);
+
+ if (tempNum == 1) {
+ return resultNum;
+ }
+ }
+
+ return resultNum;
+ }
+
+ private BigInteger OddPow (BigInteger b, BigInteger exp)
+ {
+ BigInteger resultNum = new BigInteger (Montgomery.ToMont (1, mod), mod.length << 1);
+ BigInteger tempNum = new BigInteger (Montgomery.ToMont (b, mod), mod.length << 1); // ensures (tempNum * tempNum) < b^ (2k)
+ uint mPrime = Montgomery.Inverse (mod.data [0]);
+ uint totalBits = (uint)exp.bitCount ();
+
+ uint [] wkspace = new uint [mod.length << 1];
+
+ // perform squaring and multiply exponentiation
+ for (uint pos = 0; pos < totalBits; pos++) {
+ if (exp.testBit (pos)) {
+
+ Array.Clear (wkspace, 0, wkspace.Length);
+ Kernel.Multiply (resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
+ resultNum.length += tempNum.length;
+ uint [] t = wkspace;
+ wkspace = resultNum.data;
+ resultNum.data = t;
+
+ Montgomery.Reduce (resultNum, mod, mPrime);
+ }
+
+ Kernel.SquarePositive (tempNum, ref wkspace);
+ Montgomery.Reduce (tempNum, mod, mPrime);
+ }
+
+ Montgomery.Reduce (resultNum, mod, mPrime);
+ return resultNum;
+ }
+
+ #region Pow Small Base
+
+ // TODO: Make tests for this, not really needed b/c prime stuff
+ // checks it, but still would be nice
+ public BigInteger Pow (uint b, BigInteger exp)
+ {
+ if (b != 2) {
+ if ((mod.data [0] & 1) == 1) return OddPow (b, exp);
+ else return EvenPow (b, exp);
+ } else {
+ if ((mod.data [0] & 1) == 1) return OddModTwoPow (exp);
+ else return EvenModTwoPow (exp);
+ }
+ }
+
+ private BigInteger OddPow (uint b, BigInteger exp)
+ {
+ exp.Normalize ();
+ uint [] wkspace = new uint [mod.length << 1 + 1];
+
+ BigInteger resultNum = Montgomery.ToMont ((BigInteger)b, this.mod);
+ resultNum = new BigInteger (resultNum, mod.length << 1 +1);
+
+ uint mPrime = Montgomery.Inverse (mod.data [0]);
+
+ uint pos = (uint)exp.bitCount () - 2;
+
+ //
+ // We know that the first itr will make the val b
+ //
+
+ do {
+ //
+ // r = r ^ 2 % m
+ //
+ Kernel.SquarePositive(resultNum, ref wkspace);
+ resultNum = Montgomery.Reduce(resultNum, mod, mPrime);
+
+ if (exp.testBit(pos)) {
+
+ //
+ // r = r * b % m
+ //
+
+ uint u = 0;
+
+ uint i = 0;
+ ulong mc = 0;
+
+ do {
+ mc += (ulong)resultNum.data[u + i] * (ulong)b;
+ resultNum.data[u + i] = (uint)mc;
+ mc >>= 32;
+ } while (++i < resultNum.length);
+
+ if (resultNum.length < mod.length) {
+ if (mc != 0) {
+ resultNum.data[u + i] = (uint)mc;
+ resultNum.length++;
+ while (resultNum >= mod)
+ Kernel.MinusEq(resultNum, mod);
+ }
+ } else if (mc != 0) {
+
+ //
+ // First, we estimate the quotient by dividing
+ // the first part of each of the numbers. Then
+ // we correct this, if necessary, with a subtraction.
+ //
+
+ uint cc = (uint)mc;
+
+ // We would rather have this estimate overshoot,
+ // so we add one to the divisor
+ uint divEstimate = (uint)((((ulong)cc << 32) | (ulong)resultNum.data[u + i - 1]) /
+ (mod.data[mod.length - 1] + 1));
+
+ uint t;
+
+ i = 0;
+ mc = 0;
+ do {
+ mc += (ulong)mod.data[i] * (ulong)divEstimate;
+ t = resultNum.data[u + i];
+ resultNum.data[u + i] -= (uint)mc;
+ mc >>= 32;
+ if (resultNum.data[u + i] > t) mc++;
+ i++;
+ } while (i < resultNum.length);
+ cc -= (uint)mc;
+
+ if (cc != 0) {
+
+ uint sc = 0, j = 0;
+ uint[] s = mod.data;
+ do {
+ uint a = s[j];
+ if (((a += sc) < sc) | ((resultNum.data[u + j] -= a) > ~a)) sc = 1;
+ else sc = 0;
+ j++;
+ } while (j < resultNum.length);
+ cc -= sc;
+ }
+ while (resultNum >= mod)
+ Kernel.MinusEq(resultNum, mod);
+ } else {
+ while (resultNum >= mod)
+ Kernel.MinusEq(resultNum, mod);
+ }
+ }
+ } while (pos-- > 0);
+
+ resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+ return resultNum;
+
+ }
+
+ private BigInteger EvenPow(uint b, BigInteger exp) {
+ exp.Normalize();
+ uint[] wkspace = new uint[mod.length << 1 + 1];
+ BigInteger resultNum = new BigInteger((BigInteger)b, mod.length << 1 + 1);
+
+ uint pos = (uint)exp.bitCount() - 2;
+
+ //
+ // We know that the first itr will make the val b
+ //
+
+ do {
+ //
+ // r = r ^ 2 % m
+ //
+ Kernel.SquarePositive(resultNum, ref wkspace);
+ if (!(resultNum.length < mod.length))
+ BarrettReduction(resultNum);
+
+ if (exp.testBit(pos)) {
+
+ //
+ // r = r * b % m
+ //
+
+ uint u = 0;
+
+ uint i = 0;
+ ulong mc = 0;
+
+ do {
+ mc += (ulong)resultNum.data[u + i] * (ulong)b;
+ resultNum.data[u + i] = (uint)mc;
+ mc >>= 32;
+ } while (++i < resultNum.length);
+
+ if (resultNum.length < mod.length) {
+ if (mc != 0) {
+ resultNum.data[u + i] = (uint)mc;
+ resultNum.length++;
+ while (resultNum >= mod)
+ Kernel.MinusEq(resultNum, mod);
+ }
+ } else if (mc != 0) {
+
+ //
+ // First, we estimate the quotient by dividing
+ // the first part of each of the numbers. Then
+ // we correct this, if necessary, with a subtraction.
+ //
+
+ uint cc = (uint)mc;
+
+ // We would rather have this estimate overshoot,
+ // so we add one to the divisor
+ uint divEstimate = (uint)((((ulong)cc << 32) | (ulong)resultNum.data[u + i - 1]) /
+ (mod.data[mod.length - 1] + 1));
+
+ uint t;
+
+ i = 0;
+ mc = 0;
+ do {
+ mc += (ulong)mod.data[i] * (ulong)divEstimate;
+ t = resultNum.data[u + i];
+ resultNum.data[u + i] -= (uint)mc;
+ mc >>= 32;
+ if (resultNum.data[u + i] > t) mc++;
+ i++;
+ } while (i < resultNum.length);
+ cc -= (uint)mc;
+
+ if (cc != 0) {
+
+ uint sc = 0, j = 0;
+ uint[] s = mod.data;
+ do {
+ uint a = s[j];
+ if (((a += sc) < sc) | ((resultNum.data[u + j] -= a) > ~a)) sc = 1;
+ else sc = 0;
+ j++;
+ } while (j < resultNum.length);
+ cc -= sc;
+ }
+ while (resultNum >= mod)
+ Kernel.MinusEq(resultNum, mod);
+ } else {
+ while (resultNum >= mod)
+ Kernel.MinusEq(resultNum, mod);
+ }
+ }
+ } while (pos-- > 0);
+
+ return resultNum;
+ }
+
+ private BigInteger EvenModTwoPow (BigInteger exp)
+ {
+ exp.Normalize ();
+ uint [] wkspace = new uint [mod.length << 1 + 1];
+
+ BigInteger resultNum = new BigInteger (2, mod.length << 1 +1);
+
+ uint value = exp.data [exp.length - 1];
+ uint mask = 0x80000000;
+
+ // Find the first bit of the exponent
+ while ((value & mask) == 0)
+ mask >>= 1;
+
+ //
+ // We know that the first itr will make the val 2,
+ // so eat one bit of the exponent
+ //
+ mask >>= 1;
+
+ uint wPos = exp.length - 1;
+
+ do {
+ value = exp.data [wPos];
+ do {
+ Kernel.SquarePositive (resultNum, ref wkspace);
+ if (resultNum.length >= mod.length)
+ BarrettReduction (resultNum);
+
+ if ((value & mask) != 0) {
+ //
+ // resultNum = (resultNum * 2) % mod
+ //
+
+ uint u = 0;
+ //
+ // Double
+ //
+ uint uu = u;
+ uint uuE = u + resultNum.length;
+ uint x, carry = 0;
+ while (uu < uuE) {
+ x = resultNum.data[uu];
+ resultNum.data[uu] = (x << 1) | carry;
+ carry = x >> (32 - 1);
+ uu++;
+ }
+
+ // subtraction inlined because we know it is square
+ if (carry != 0 || resultNum >= mod) {
+ uu = u;
+ uint c = 0;
+ uint[] s = mod.data;
+ uint i = 0;
+ do {
+ uint a = s[i];
+ if (((a += c) < c) | ((resultNum.data[uu++] -= a) > ~a))
+ c = 1;
+ else
+ c = 0;
+ i++;
+ } while (uu < uuE);
+ }
+
+ }
+ } while ((mask >>= 1) > 0);
+ mask = 0x80000000;
+ } while (wPos-- > 0);
+
+ return resultNum;
+ }
+
+ private BigInteger OddModTwoPow (BigInteger exp)
+ {
+
+ uint [] wkspace = new uint [mod.length << 1 + 1];
+
+ BigInteger resultNum = Montgomery.ToMont ((BigInteger)2, this.mod);
+ resultNum = new BigInteger (resultNum, mod.length << 1 +1);
+
+ uint mPrime = Montgomery.Inverse (mod.data [0]);
+
+ //
+ // TODO: eat small bits, the ones we can do with no modular reduction
+ //
+ uint pos = (uint)exp.bitCount () - 2;
+
+ do {
+ Kernel.SquarePositive (resultNum, ref wkspace);
+ resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+
+ if (exp.testBit(pos)) {
+ //
+ // resultNum = (resultNum * 2) % mod
+ //
+
+ uint u = 0;
+ //
+ // Double
+ //
+ uint uu = u;
+ uint uuE = u + resultNum.length;
+ uint x, carry = 0;
+ while (uu < uuE) {
+ x = resultNum.data[uu];
+ resultNum.data[uu] = (x << 1) | carry;
+ carry = x >> (32 - 1);
+ uu++;
+ }
+
+ // subtraction inlined because we know it is square
+ if (carry != 0 || resultNum >= mod) {
+ uint s = 0;
+ uu = u;
+ uint c = 0;
+ uint ss = s;
+ do {
+ uint a = mod.data[ss++];
+ if (((a += c) < c) | ((resultNum.data[uu++] -= a) > ~a))
+ c = 1;
+ else
+ c = 0;
+ } while (uu < uuE);
+ }
+ }
+ } while (pos-- > 0);
+
+ resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
+ return resultNum;
+ }
+
+ #endregion
+ }
+
+ public sealed class Montgomery {
+ public static uint Inverse (uint n)
+ {
+ uint y = n, z;
+
+ while ((z = n * y) != 1)
+ y *= 2 - z;
+
+ return (uint)-y;
+ }
+
+ public static BigInteger ToMont (BigInteger n, BigInteger m)
+ {
+ n.Normalize (); m.Normalize ();
+
+ n <<= (int)m.length * 32;
+ n %= m;
+ return n;
+ }
+
+ public static BigInteger Reduce(BigInteger n, BigInteger m, uint mPrime)
+ {
+ BigInteger A = n;
+ uint a = 0, mm = 0;
+ for (uint i = 0; i < m.length; i++) {
+ // The mod here is taken care of by the CPU,
+ // since the multiply will overflow.
+ uint u_i = A.data[a] * mPrime /* % 2^32 */;
+
+ //
+ // A += u_i * m;
+ // A >>= 32
+ //
+
+ // mP = Position in mod
+ // aSP = the source of bits from a
+ // aDP = destination for bits
+ uint mP = mm, aSP = a, aDP = a;
+
+ ulong c = (ulong)u_i * (ulong)m.data[mP++] + A.data[aSP++];
+ c >>= 32;
+ uint j = 1;
+
+ // Multiply and add
+ for (; j < m.length; j++) {
+ c += (ulong)u_i * (ulong)m.data[mP++] + A.data[aSP++];
+ A.data[aDP++] = (uint)c;
+ c >>= 32;
+ }
+
+ // Account for carry
+ // TODO: use a better loop here, we dont need the ulong stuff
+ for (; j < A.length; j++) {
+ c += A.data[aSP++];
+ A.data[aDP++] = (uint)c;
+ c >>= 32;
+ if (c == 0) { j++; break; }
+ }
+ // Copy the rest
+ for (; j < A.length; j++) {
+ A.data[aDP++] = A.data[aSP++];
+ }
+
+ A.data[aDP++] = (uint)c;
+ }
+
+ while (A.length > 1 && A.data[a + A.length - 1] == 0) A.length--;
+
+ if (A >= m) Kernel.MinusEq(A, m);
+
+ return A;
+ }
+
+ public static BigInteger Reduce (BigInteger n, BigInteger m)
+ {
+ return Reduce (n, m, Inverse (m.data [0]));
+ }
+ }
+
+ /// <summary>
+ /// Low level functions for the BigInteger
+ /// </summary>
+ private sealed class Kernel {
+ private Kernel() { }
+ #region Addition/Subtraction
+
+ /// <summary>
+ /// Adds two numbers with the same sign.
+ /// </summary>
+ /// <param name="bi1">A BigInteger</param>
+ /// <param name="bi2">A BigInteger</param>
+ /// <returns>bi1 + bi2</returns>
+ public static BigInteger AddSameSign (BigInteger bi1, BigInteger bi2)
+ {
+ uint [] x, y;
+ uint yMax, xMax, i = 0;
+
+ // x should be bigger
+ if (bi1.length < bi2.length) {
+ x = bi2.data;
+ xMax = bi2.length;
+ y = bi1.data;
+ yMax = bi1.length;
+ } else {
+ x = bi1.data;
+ xMax = bi1.length;
+ y = bi2.data;
+ yMax = bi2.length;
+ }
+
+ BigInteger result = new BigInteger (Sign.Positive, xMax + 1);
+
+ uint [] r = result.data;
+
+ ulong sum = 0;
+
+ // Add common parts of both numbers
+ do {
+ sum = ((ulong)x [i]) + ((ulong)y [i]) + sum;
+ r [i] = (uint)sum;
+ sum >>= 32;
+ } while (++i < yMax);
+
+ // Copy remainder of longer number while carry propagation is required
+ bool carry = (sum != 0);
+
+ if (carry) {
+
+ if (i < xMax) {
+ do
+ carry = ((r [i] = x [i] + 1) == 0);
+ while (++i < xMax && carry);
+ }
+
+ if (carry) {
+ r [i] = 1;
+ result.length = ++i;
+ return result;
+ }
+ }
+
+ // Copy the rest
+ if (i < xMax) {
+ do
+ r [i] = x [i];
+ while (++i < xMax);
+ }
+
+ result.Normalize ();
+ return result;
+ }
+
+ public static BigInteger Subtract (BigInteger big, BigInteger small)
+ {
+ BigInteger result = new BigInteger (Sign.Positive, big.length);
+
+ uint [] r = result.data, b = big.data, s = small.data;
+ uint i = 0, c = 0;
+
+ do {
+
+ uint x = s [i];
+ if (((x += c) < c) | ((r [i] = b [i] - x) > ~x))
+ c = 1;
+ else
+ c = 0;
+
+ } while (++i < small.length);
+
+ if (i == big.length) goto fixup;
+
+ if (c == 1) {
+ do
+ r [i] = b [i] - 1;
+ while (b [i++] == 0 && i < big.length);
+
+ if (i == big.length) goto fixup;
+ }
+
+ do
+ r [i] = b [i];
+ while (++i < big.length);
+
+ fixup:
+
+ result.Normalize ();
+ return result;
+ }
+
+ public static void MinusEq (BigInteger big, BigInteger small)
+ {
+ uint [] b = big.data, s = small.data;
+ uint i = 0, c = 0;
+
+ do {
+ uint x = s [i];
+ if (((x += c) < c) | ((b [i] -= x) > ~x))
+ c = 1;
+ else
+ c = 0;
+ } while (++i < small.length);
+
+ if (i == big.length) goto fixup;
+
+ if (c == 1) {
+ do
+ b [i]--;
+ while (b [i++] == 0 && i < big.length);
+ }
+
+ fixup:
+
+ // Normalize length
+ while (big.length > 0 && big.data [big.length-1] == 0) big.length--;
+
+ // Check for zero
+ if (big.length == 0)
+ big.length++;
+
+ }
+
+ public static void PlusEq (BigInteger bi1, BigInteger bi2)
+ {
+ uint [] x, y;
+ uint yMax, xMax, i = 0;
+ bool flag = false;
+
+ // x should be bigger
+ if (bi1.length < bi2.length){
+ flag = true;
+ x = bi2.data;
+ xMax = bi2.length;
+ y = bi1.data;
+ yMax = bi1.length;
+ } else {
+ x = bi1.data;
+ xMax = bi1.length;
+ y = bi2.data;
+ yMax = bi2.length;
+ }
+
+ uint [] r = bi1.data;
+
+ ulong sum = 0;
+
+ // Add common parts of both numbers
+ do {
+ sum += ((ulong)x [i]) + ((ulong)y [i]);
+ r [i] = (uint)sum;
+ sum >>= 32;
+ } while (++i < yMax);
+
+ // Copy remainder of longer number while carry propagation is required
+ bool carry = (sum != 0);
+
+ if (carry){
+
+ if (i < xMax) {
+ do
+ carry = ((r [i] = x [i] + 1) == 0);
+ while (++i < xMax && carry);
+ }
+
+ if (carry) {
+ r [i] = 1;
+ bi1.length = ++i;
+ return;
+ }
+ }
+
+ // Copy the rest
+ if (flag && i < xMax - 1) {
+ do
+ r [i] = x [i];
+ while (++i < xMax);
+ }
+
+ bi1.length = xMax + 1;
+ bi1.Normalize ();
+ }
+
+ #endregion
+
+ #region Compare
+
+ /// <summary>
+ /// Compares two BigInteger
+ /// </summary>
+ /// <param name="bi1">A BigInteger</param>
+ /// <param name="bi2">A BigInteger</param>
+ /// <returns>The sign of bi1 - bi2</returns>
+ public static Sign Compare (BigInteger bi1, BigInteger bi2)
+ {
+ //
+ // Step 1. Compare the lengths
+ //
+ uint l1 = bi1.length, l2 = bi2.length;
+
+ while (l1 > 0 && bi1.data [l1-1] == 0) l1--;
+ while (l2 > 0 && bi2.data [l2-1] == 0) l2--;
+
+ if (l1 == 0 && l2 == 0) return Sign.Zero;
+
+ // bi1 len < bi2 len
+ if (l1 < l2) return Sign.Negative;
+ // bi1 len > bi2 len
+ else if (l1 > l2) return Sign.Positive;
+
+ //
+ // Step 2. Compare the bits
+ //
+
+ uint pos = l1 - 1;
+
+ while (pos != 0 && bi1.data [pos] == bi2.data [pos]) pos--;
+
+ if (bi1.data [pos] < bi2.data [pos])
+ return Sign.Negative;
+ else if (bi1.data [pos] > bi2.data [pos])
+ return Sign.Positive;
+ else
+ return Sign.Zero;
+ }
+
+ #endregion
+
+ #region Division
+
+ #region Dword
+
+ /// <summary>
+ /// Performs n / d and n % d in one operation.
+ /// </summary>
+ /// <param name="n">A BigInteger, upon exit this will hold n / d</param>
+ /// <param name="d">The divisor</param>
+ /// <returns>n % d</returns>
+ public static uint SingleByteDivideInPlace (BigInteger n, uint d)
+ {
+ ulong r = 0;
+ uint i = n.length;
+
+ while (i-- > 0) {
+ r <<= 32;
+ r |= n.data [i];
+ n.data [i] = (uint)(r / d);
+ r %= d;
+ }
+ n.Normalize ();
+
+ return (uint)r;
+ }
+
+ public static uint DwordMod (BigInteger n, uint d)
+ {
+ ulong r = 0;
+ uint i = n.length;
+
+ while (i-- > 0) {
+ r <<= 32;
+ r |= n.data [i];
+ r %= d;
+ }
+
+ return (uint)r;
+ }
+
+ public static BigInteger DwordDiv (BigInteger n, uint d)
+ {
+ BigInteger ret = new BigInteger (Sign.Positive, n.length);
+
+ ulong r = 0;
+ uint i = n.length;
+
+ while (i-- > 0) {
+ r <<= 32;
+ r |= n.data [i];
+ ret.data [i] = (uint)(r / d);
+ r %= d;
+ }
+ ret.Normalize ();
+
+ return ret;
+ }
+
+ public static BigInteger [] DwordDivMod (BigInteger n, uint d)
+ {
+ BigInteger ret = new BigInteger (Sign.Positive , n.length);
+
+ ulong r = 0;
+ uint i = n.length;
+
+ while (i-- > 0) {
+ r <<= 32;
+ r |= n.data [i];
+ ret.data [i] = (uint)(r / d);
+ r %= d;
+ }
+ ret.Normalize ();
+
+ BigInteger rem = (uint)r;
+
+ return new BigInteger [] {ret, rem};
+ }
+
+ #endregion
+
+ #region BigNum
+
+ public static BigInteger [] multiByteDivide (BigInteger bi1, BigInteger bi2)
+ {
+ if (Kernel.Compare (bi1, bi2) == Sign.Negative)
+ return new BigInteger [2] { 0, new BigInteger (bi1) };
+
+ bi1.Normalize (); bi2.Normalize ();
+
+ if (bi2.length == 1)
+ return DwordDivMod (bi1, bi2.data [0]);
+
+ uint remainderLen = bi1.length + 1;
+ int divisorLen = (int)bi2.length + 1;
+
+ uint mask = 0x80000000;
+ uint val = bi2.data [bi2.length - 1];
+ int shift = 0;
+ int resultPos = (int)bi1.length - (int)bi2.length;
+
+ while (mask != 0 && (val & mask) == 0) {
+ shift++; mask >>= 1;
+ }
+
+ BigInteger quot = new BigInteger (Sign.Positive, bi1.length - bi2.length + 1);
+ BigInteger rem = (bi1 << shift);
+
+ uint [] remainder = rem.data;
+
+ bi2 = bi2 << shift;
+
+ int j = (int)(remainderLen - bi2.length);
+ int pos = (int)remainderLen - 1;
+
+ uint firstDivisorByte = bi2.data [bi2.length-1];
+ ulong secondDivisorByte = bi2.data [bi2.length-2];
+
+ while (j > 0) {
+ ulong dividend = ((ulong)remainder [pos] << 32) + (ulong)remainder [pos-1];
+
+ ulong q_hat = dividend / (ulong)firstDivisorByte;
+ ulong r_hat = dividend % (ulong)firstDivisorByte;
+
+ do {
+
+ if (q_hat == 0x100000000 ||
+ (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder [pos-2])) {
+ q_hat--;
+ r_hat += (ulong)firstDivisorByte;
+
+ if (r_hat < 0x100000000)
+ continue;
+ }
+ break;
+ } while (true);
+
+ //
+ // At this point, q_hat is either exact, or one too large
+ // (more likely to be exact) so, we attempt to multiply the
+ // divisor by q_hat, if we get a borrow, we just subtract
+ // one from q_hat and add the divisor back.
+ //
+
+ uint t;
+ uint dPos = 0;
+ int nPos = pos - divisorLen + 1;
+ ulong mc = 0;
+ uint uint_q_hat = (uint)q_hat;
+ do {
+ mc += (ulong)bi2.data [dPos] * (ulong)uint_q_hat;
+ t = remainder [nPos];
+ remainder [nPos] -= (uint)mc;
+ mc >>= 32;
+ if (remainder [nPos] > t) mc++;
+ dPos++; nPos++;
+ } while (dPos < divisorLen);
+
+ nPos = pos - divisorLen + 1;
+ dPos = 0;
+
+ // Overestimate
+ if (mc != 0) {
+ uint_q_hat--;
+ ulong sum = 0;
+
+ do {
+ sum = ((ulong)remainder [nPos]) + ((ulong)bi2.data [dPos]) + sum;
+ remainder [nPos] = (uint)sum;
+ sum >>= 32;
+ dPos++; nPos++;
+ } while (dPos < divisorLen);
+
+ }
+
+ quot.data [resultPos--] = (uint)uint_q_hat;
+
+ pos--;
+ j--;
+ }
+
+ quot.Normalize ();
+ rem.Normalize ();
+ BigInteger [] ret = new BigInteger [2] { quot, rem };
+
+ if (shift != 0)
+ ret [1] >>= shift;
+
+ return ret;
+ }
+
+ #endregion
+
+ #endregion
+
+ #region Shift
+ public static BigInteger LeftShift (BigInteger bi, int n)
+ {
+ if (n == 0) return new BigInteger (bi, bi.length + 1);
+
+ int w = n >> 5;
+ n &= ((1 << 5) - 1);
+
+ BigInteger ret = new BigInteger (Sign.Positive, bi.length + 1 + (uint)w);
+
+ uint i = 0, l = bi.length;
+ if (n != 0) {
+ uint x, carry = 0;
+ while (i < l) {
+ x = bi.data [i];
+ ret.data [i + w] = (x << n) | carry;
+ carry = x >> (32 - n);
+ i++;
+ }
+ ret.data [i + w] = carry;
+ } else {
+ while (i < l) {
+ ret.data [i + w] = bi.data [i];
+ i++;
+ }
+ }
+
+ ret.Normalize ();
+ return ret;
+ }
+
+ public static BigInteger RightShift (BigInteger bi, int n)
+ {
+ if (n == 0) return new BigInteger (bi);
+
+ int w = n >> 5;
+ int s = n & ((1 << 5) - 1);
+
+ BigInteger ret = new BigInteger (Sign.Positive, bi.length - (uint)w + 1);
+ uint l = (uint)ret.data.Length - 1;
+
+ if (s != 0) {
+
+ uint x, carry = 0;
+
+ while (l-- > 0) {
+ x = bi.data [l + w];
+ ret.data [l] = (x >> n) | carry;
+ carry = x << (32 - n);
+ }
+ } else {
+ while (l-- > 0)
+ ret.data [l] = bi.data [l + w];
+
+ }
+ ret.Normalize ();
+ return ret;
+ }
+
+ #endregion
+
+ #region Multiply
+
+ public static BigInteger MultiplyByDword (BigInteger n, uint f)
+ {
+ BigInteger ret = new BigInteger (Sign.Positive, n.length + 1);
+
+ uint i = 0;
+ ulong c = 0;
+
+ do {
+ c += (ulong)n.data [i] * (ulong)f;
+ ret.data [i] = (uint)c;
+ c >>= 32;
+ } while (++i < n.length);
+ ret.data [i] = (uint)c;
+ ret.Normalize ();
+ return ret;
+
+ }
+
+ /// <summary>
+ /// Multiplies the data in x [xOffset:xOffset+xLen] by
+ /// y [yOffset:yOffset+yLen] and puts it into
+ /// d [dOffset:dOffset+xLen+yLen].
+ /// </summary>
+ public static void Multiply(uint[] x, uint xOffset, uint xLen, uint[] y, uint yOffset, uint yLen, uint[] d, uint dOffset)
+ {
+ uint xx = 0, yy = 0, dd = 0;
+ uint xP = xx + xOffset,
+ xE = xP + xLen,
+ yB = yy + yOffset,
+ yE = yB + yLen,
+ dB = dd + dOffset;
+
+ for (; xP < xE; xP++, dB++) {
+
+ if (x[xP] == 0) continue;
+
+ ulong mcarry = 0;
+
+ uint dP = dB;
+ for (uint yP = yB; yP < yE; yP++, dP++) {
+ mcarry += ((ulong)x[xP] * (ulong)y[yP]) + (ulong)d[dP];
+
+ d[dP] = (uint)mcarry;
+ mcarry >>= 32;
+ }
+
+ if (mcarry != 0)
+ d[dP] = (uint)mcarry;
+ }
+ }
+
+ /// <summary>
+ /// Multiplies the data in x [xOffset:xOffset+xLen] by
+ /// y [yOffset:yOffset+yLen] and puts the low mod words into
+ /// d [dOffset:dOffset+mod].
+ /// </summary>
+ public static void MultiplyMod2p32pmod(uint[] x, int xOffset, int xLen, uint[] y, int yOffest, int yLen, uint[] d, int dOffset, int mod)
+ {
+ uint xx = 0, yy = 0, dd = 0;
+ uint xP = (uint)(xx + xOffset),
+ xE = (uint)(xP + xLen),
+ yB = (uint)(yy + yOffest),
+ yE = (uint)(yB + yLen),
+ dB = (uint)(dd + dOffset),
+ dE = (uint)(dB + mod);
+
+ for (; xP < xE; xP++, dB++)
+ {
+
+ if (x[xP] == 0) continue;
+
+ ulong mcarry = 0;
+ uint dP = dB;
+ for (uint yP = yB; yP < yE && dP < dE; yP++, dP++)
+ {
+ mcarry += ((ulong)x[xP] * (ulong)y[yP]) + (ulong)d[dP];
+
+ d[dP] = (uint)mcarry;
+ mcarry >>= 32;
+ }
+
+ if (mcarry != 0 && dP < dE)
+ d[dP] = (uint)mcarry;
+ }
+ }
+
+ public static void SquarePositive(BigInteger bi, ref uint[] wkSpace) {
+ uint[] t = wkSpace;
+ wkSpace = bi.data;
+ uint[] d = bi.data;
+ uint dl = bi.length;
+ bi.data = t;
+
+ uint dd = 0, tt = 0;
+
+ uint ttE = (uint)t.Length;
+ // Clear the dest
+ for (uint ttt = tt; ttt < ttE; ttt++)
+ t[ttt] = 0;
+
+ uint dP = dd, tP = tt;
+
+ for (uint i = 0; i < dl; i++, dP++) {
+ if (d[dP] == 0)
+ continue;
+
+ ulong mcarry = 0;
+ uint bi1val = d[dP];
+
+ uint dP2 = dP + 1, tP2 = tP + 2 * i + 1;
+
+ for (uint j = i + 1; j < dl; j++, tP2++, dP2++) {
+ // k = i + j
+ mcarry += ((ulong)bi1val * (ulong)d[dP2]) + t[tP2];
+
+ t[tP2] = (uint)mcarry;
+ mcarry >>= 32;
+ }
+
+ if (mcarry != 0)
+ t[tP2] = (uint)mcarry;
+ }
+
+ // Double t. Inlined for speed.
+
+ tP = tt;
+
+ uint x, carry = 0;
+ while (tP < ttE) {
+ x = t[tP];
+ t[tP] = (x << 1) | carry;
+ carry = x >> (32 - 1);
+ tP++;
+ }
+ if (carry != 0) t[tP] = carry;
+
+ // Add in the diagnals
+
+ dP = dd;
+ tP = tt;
+ for (uint dE = dP + dl; (dP < dE); dP++, tP++) {
+ ulong val = (ulong)d[dP] * (ulong)d[dP] + t[tP];
+ t[tP] = (uint)val;
+ val >>= 32;
+ t[(++tP)] += (uint)val;
+ if (t[tP] < (uint)val) {
+ uint tP3 = tP;
+ // Account for the first carry
+ (t[++tP3])++;
+
+ // Keep adding until no carry
+ while ((t[tP3++]) == 0x0)
+ (t[tP3])++;
+ }
+
+ }
+
+ bi.length <<= 1;
+
+ // Normalize length
+ while (t[tt + bi.length - 1] == 0 && bi.length > 1) bi.length--;
+
+ }
+#if UNUSED
+ public static bool Double (uint [] u, int l)
+ {
+ uint x, carry = 0;
+ uint i = 0;
+ while (i < l) {
+ x = u [i];
+ u [i] = (x << 1) | carry;
+ carry = x >> (32 - 1);
+ i++;
+ }
+ if (carry != 0) u [l] = carry;
+ return carry != 0;
+ }
+#endif
+ #endregion
+
+ #region Number Theory
+
+ public static BigInteger gcd (BigInteger a, BigInteger b)
+ {
+ BigInteger x = a;
+ BigInteger y = b;
+
+ BigInteger g = y;
+
+ while (x.length > 1) {
+ g = x;
+ x = y % x;
+ y = g;
+
+ }
+ if (x == 0) return g;
+
+ // TODO: should we have something here if we can convert to long?
+
+ //
+ // Now we can just do it with single precision. I am using the binary gcd method,
+ // as it should be faster.
+ //
+
+ uint yy = x.data [0];
+ uint xx = y % yy;
+
+ int t = 0;
+
+ while (((xx | yy) & 1) == 0) {
+ xx >>= 1; yy >>= 1; t++;
+ }
+ while (xx != 0) {
+ while ((xx & 1) == 0) xx >>= 1;
+ while ((yy & 1) == 0) yy >>= 1;
+ if (xx >= yy)
+ xx = (xx - yy) >> 1;
+ else
+ yy = (yy - xx) >> 1;
+ }
+
+ return yy << t;
+ }
+
+ public static uint modInverse (BigInteger bi, uint modulus)
+ {
+ uint a = modulus, b = bi % modulus;
+ uint p0 = 0, p1 = 1;
+
+ while (b != 0) {
+ if (b == 1)
+ return p1;
+ p0 += (a / b) * p1;
+ a %= b;
+
+ if (a == 0)
+ break;
+ if (a == 1)
+ return modulus-p0;
+
+ p1 += (b / a) * p0;
+ b %= a;
+
+ }
+ return 0;
+ }
+
+ public static BigInteger modInverse (BigInteger bi, BigInteger modulus)
+ {
+ if (modulus.length == 1) return modInverse (bi, modulus.data [0]);
+
+ BigInteger [] p = { 0, 1 };
+ BigInteger [] q = new BigInteger [2]; // quotients
+ BigInteger [] r = { 0, 0 }; // remainders
+
+ int step = 0;
+
+ BigInteger a = modulus;
+ BigInteger b = bi;
+
+ ModulusRing mr = new ModulusRing (modulus);
+
+ while (b != 0) {
+
+ if (step > 1) {
+
+ BigInteger pval = mr.Difference (p [0], p [1] * q [0]);
+ p [0] = p [1]; p [1] = pval;
+ }
+
+ BigInteger [] divret = multiByteDivide (a, b);
+
+ q [0] = q [1]; q [1] = divret [0];
+ r [0] = r [1]; r [1] = divret [1];
+ a = b;
+ b = divret [1];
+
+ step++;
+ }
+
+ if (r [0] != 1)
+ throw (new ArithmeticException ("No inverse!"));
+
+ return mr.Difference (p [0], p [1] * q [0]);
+
+ }
+ #endregion
+ }
+ }
+}