diff options
Diffstat (limited to 'src/OAuth/OAuthAuthorizationServer/Code/OAuth2AuthorizationServer.cs')
-rw-r--r-- | src/OAuth/OAuthAuthorizationServer/Code/OAuth2AuthorizationServer.cs | 191 |
1 files changed, 191 insertions, 0 deletions
diff --git a/src/OAuth/OAuthAuthorizationServer/Code/OAuth2AuthorizationServer.cs b/src/OAuth/OAuthAuthorizationServer/Code/OAuth2AuthorizationServer.cs new file mode 100644 index 0000000..b837d4c --- /dev/null +++ b/src/OAuth/OAuthAuthorizationServer/Code/OAuth2AuthorizationServer.cs @@ -0,0 +1,191 @@ +namespace OAuthAuthorizationServer.Code { + using System; + using System.Collections.Generic; + using System.Linq; + using System.Security.Cryptography; + using System.Web; + using DotNetOpenAuth.Messaging; + using DotNetOpenAuth.Messaging.Bindings; + using DotNetOpenAuth.OAuth2; + using DotNetOpenAuth.OAuth2.ChannelElements; + using DotNetOpenAuth.OAuth2.Messages; + + internal class OAuth2AuthorizationServer : IAuthorizationServer { + private static readonly RSACryptoServiceProvider AsymmetricTokenSigningPrivateKey = CreateRSA(); + +#if SAMPLESONLY + /// <summary> + /// This is the FOR SAMPLE ONLY hard-coded public key of the complementary OAuthResourceServer sample. + /// </summary> + /// <remarks> + /// In a real app, the authorization server would need to determine which resource server the access token needs to be encoded for + /// based on the authorization request. It would then need to look up the public key for that resource server and use that in + /// preparing the access token for the client to use against that resource server. + /// </remarks> + private static readonly RSAParameters ResourceServerEncryptionPublicKey = new RSAParameters { + Exponent = new byte[] { 1, 0, 1 }, + Modulus = new byte[] { 166, 175, 117, 169, 211, 251, 45, 215, 55, 53, 202, 65, 153, 155, 92, 219, 235, 243, 61, 170, 101, 250, 221, 214, 239, 175, 238, 175, 239, 20, 144, 72, 227, 221, 4, 219, 32, 225, 101, 96, 18, 33, 117, 176, 110, 123, 109, 23, 29, 85, 93, 50, 129, 163, 113, 57, 122, 212, 141, 145, 17, 31, 67, 165, 181, 91, 117, 23, 138, 251, 198, 132, 188, 213, 10, 157, 116, 229, 48, 168, 8, 127, 28, 156, 239, 124, 117, 36, 232, 100, 222, 23, 52, 186, 239, 5, 63, 207, 185, 16, 137, 73, 137, 147, 252, 71, 9, 239, 113, 27, 88, 255, 91, 56, 192, 142, 210, 21, 34, 81, 204, 239, 57, 60, 140, 249, 15, 101 }, + }; +#else + [Obsolete("You must use a real key for a real app.", true)] + private static readonly RSAParameters ResourceServerEncryptionPublicKey; +#endif + + #region Implementation of IAuthorizationServer + + public ICryptoKeyStore CryptoKeyStore { + get { return MvcApplication.KeyNonceStore; } + } + + public INonceStore VerificationCodeNonceStore { + get { return MvcApplication.KeyNonceStore; } + } + + public RSACryptoServiceProvider AccessTokenSigningKey { + get { return AsymmetricTokenSigningPrivateKey; } + } + + public TimeSpan GetAccessTokenLifetime(IAccessTokenRequest accessTokenRequestMessage) { + // Just for the sake of the sample, we use a short-lived token. This can be useful to mitigate the security risks + // of access tokens that are used over standard HTTP. + // But this is just the lifetime of the access token. The client can still renew it using their refresh token until + // the authorization itself expires. + TimeSpan lifetime = TimeSpan.FromMinutes(2); + + // Also take into account the remaining life of the authorization and artificially shorten the access token's lifetime + // to account for that if necessary. + //// TODO: code here + + return lifetime; + } + + public RSACryptoServiceProvider GetResourceServerEncryptionKey(IAccessTokenRequest accessTokenRequestMessage) { + var resourceServerEncryptionKey = new RSACryptoServiceProvider(); + + // For this sample, we assume just one resource server. + // If this authorization server needs to mint access tokens for more than one resource server, + // we'd look at the request message passed to us and decide which public key to return. + resourceServerEncryptionKey.ImportParameters(ResourceServerEncryptionPublicKey); + + return resourceServerEncryptionKey; + } + + public IClientDescription GetClient(string clientIdentifier) { + var consumerRow = MvcApplication.DataContext.Clients.SingleOrDefault( + consumerCandidate => consumerCandidate.ClientIdentifier == clientIdentifier); + if (consumerRow == null) { + throw new ArgumentOutOfRangeException("clientIdentifier"); + } + + return consumerRow; + } + + public bool IsAuthorizationValid(IAuthorizationDescription authorization) { + return this.IsAuthorizationValid(authorization.Scope, authorization.ClientIdentifier, authorization.UtcIssued, authorization.User); + } + + public bool IsResourceOwnerCredentialValid(string userName, string password) { + // This web site delegates user authentication to OpenID Providers, and as such no users have local passwords with this server. + throw new NotSupportedException(); + } + + #endregion + + public bool CanBeAutoApproved(EndUserAuthorizationRequest authorizationRequest) { + if (authorizationRequest == null) { + throw new ArgumentNullException("authorizationRequest"); + } + + // NEVER issue an auto-approval to a client that would end up getting an access token immediately + // (without a client secret), as that would allow arbitrary clients to masquarade as an approved client + // and obtain unauthorized access to user data. + if (authorizationRequest.ResponseType == EndUserAuthorizationResponseType.AuthorizationCode) { + // Never issue auto-approval if the client secret is blank, since that too makes it easy to spoof + // a client's identity and obtain unauthorized access. + var requestingClient = MvcApplication.DataContext.Clients.First(c => c.ClientIdentifier == authorizationRequest.ClientIdentifier); + if (!string.IsNullOrEmpty(requestingClient.ClientSecret)) { + return this.IsAuthorizationValid( + authorizationRequest.Scope, + authorizationRequest.ClientIdentifier, + DateTime.UtcNow, + HttpContext.Current.User.Identity.Name); + } + } + + // Default to not auto-approving. + return false; + } + + /// <summary> + /// Creates the RSA key used by all the crypto service provider instances we create. + /// </summary> + /// <returns>RSA data that includes the private key.</returns> + private static RSAParameters CreateRSAKey() { +#if SAMPLESONLY + // Since the sample authorization server and the sample resource server must work together, + // we hard-code a FOR SAMPLE USE ONLY key pair. The matching public key information is hard-coded into the OAuthResourceServer sample. + // In a real app, the RSA parameters would typically come from a certificate that may already exist. It may simply be the HTTPS certificate for the auth server. + return new RSAParameters { + Exponent = new byte[] { 1, 0, 1 }, + Modulus = new byte[] { 210, 95, 53, 12, 203, 114, 150, 23, 23, 88, 4, 200, 47, 219, 73, 54, 146, 253, 126, 121, 105, 91, 118, 217, 182, 167, 140, 6, 67, 112, 97, 183, 66, 112, 245, 103, 136, 222, 205, 28, 196, 45, 6, 223, 192, 76, 56, 180, 90, 120, 144, 19, 31, 193, 37, 129, 186, 214, 36, 53, 204, 53, 108, 133, 112, 17, 133, 244, 3, 12, 230, 29, 243, 51, 79, 253, 10, 111, 185, 23, 74, 230, 99, 94, 78, 49, 209, 39, 95, 213, 248, 212, 22, 4, 222, 145, 77, 190, 136, 230, 134, 70, 228, 241, 194, 216, 163, 234, 52, 1, 64, 181, 139, 128, 90, 255, 214, 60, 168, 233, 254, 110, 31, 102, 58, 67, 201, 33 }, + P = new byte[] { 237, 238, 79, 75, 29, 57, 145, 201, 57, 177, 215, 108, 40, 77, 232, 237, 113, 38, 157, 195, 174, 134, 188, 175, 121, 28, 11, 236, 80, 146, 12, 38, 8, 12, 104, 46, 6, 247, 14, 149, 196, 23, 130, 116, 141, 137, 225, 74, 84, 111, 44, 163, 55, 10, 246, 154, 195, 158, 186, 241, 162, 11, 217, 77 }, + Q = new byte[] { 226, 89, 29, 67, 178, 205, 30, 152, 184, 165, 15, 152, 131, 245, 141, 80, 150, 3, 224, 136, 188, 248, 149, 36, 200, 250, 207, 156, 224, 79, 150, 191, 84, 214, 233, 173, 95, 192, 55, 123, 124, 255, 53, 85, 11, 233, 156, 66, 14, 27, 27, 163, 108, 199, 90, 37, 118, 38, 78, 171, 80, 26, 101, 37 }, + DP = new byte[] { 108, 176, 122, 132, 131, 187, 50, 191, 203, 157, 84, 29, 82, 100, 20, 205, 178, 236, 195, 17, 10, 254, 253, 222, 226, 226, 79, 8, 10, 222, 76, 178, 106, 230, 208, 8, 134, 162, 1, 133, 164, 232, 96, 109, 193, 226, 132, 138, 33, 252, 15, 86, 23, 228, 232, 54, 86, 186, 130, 7, 179, 208, 217, 217 }, + DQ = new byte[] { 175, 63, 252, 46, 140, 99, 208, 138, 194, 123, 218, 101, 101, 214, 91, 65, 199, 196, 220, 182, 66, 73, 221, 128, 11, 180, 85, 198, 202, 206, 20, 147, 179, 102, 106, 170, 247, 245, 229, 127, 81, 58, 111, 218, 151, 76, 154, 213, 114, 2, 127, 21, 187, 133, 102, 64, 151, 7, 245, 229, 34, 50, 45, 153 }, + InverseQ = new byte[] { 137, 156, 11, 248, 118, 201, 135, 145, 134, 121, 14, 162, 149, 14, 98, 84, 108, 160, 27, 91, 230, 116, 216, 181, 200, 49, 34, 254, 119, 153, 179, 52, 231, 234, 36, 148, 71, 161, 182, 171, 35, 182, 46, 164, 179, 100, 226, 71, 119, 23, 0, 16, 240, 4, 30, 57, 76, 109, 89, 131, 56, 219, 71, 206 }, + D = new byte[] { 108, 15, 123, 176, 150, 208, 197, 72, 23, 53, 159, 63, 53, 85, 238, 197, 153, 187, 156, 187, 192, 226, 186, 170, 26, 168, 245, 196, 65, 223, 248, 81, 170, 79, 91, 191, 83, 15, 31, 77, 39, 119, 249, 143, 245, 183, 49, 105, 115, 15, 122, 242, 87, 221, 94, 230, 196, 146, 59, 7, 103, 94, 9, 223, 146, 180, 189, 86, 190, 94, 242, 59, 32, 54, 23, 181, 124, 170, 63, 172, 90, 158, 169, 140, 6, 102, 170, 0, 135, 199, 35, 196, 212, 238, 196, 56, 14, 0, 140, 197, 169, 240, 156, 43, 182, 123, 102, 79, 89, 20, 120, 171, 43, 223, 58, 190, 230, 166, 185, 162, 186, 226, 31, 206, 196, 188, 104, 1 }, + }; +#else + // This is how you could generate your own public/private key pair. + // As we generate a new random key, we need to set the UseMachineKeyStore flag so that this doesn't + // crash on IIS. For more information: + // http://social.msdn.microsoft.com/Forums/en-US/clr/thread/7ea48fd0-8d6b-43ed-b272-1a0249ae490f?prof=required + var cspParameters = new CspParameters(); + cspParameters.Flags = CspProviderFlags.UseArchivableKey | CspProviderFlags.UseMachineKeyStore; + var keyPair = new RSACryptoServiceProvider(cspParameters); + + // After exporting the private/public key information, read the information out and store it somewhere + var privateKey = keyPair.ExportParameters(true); + var publicKey = keyPair.ExportParameters(false); + + // Ultimately the private key information must be what is returned through the AccessTokenSigningPrivateKey property. + return privateKey; +#endif + } + + private static RSACryptoServiceProvider CreateRSA() { + var rsa = new RSACryptoServiceProvider(); + rsa.ImportParameters(CreateRSAKey()); + return rsa; + } + + private bool IsAuthorizationValid(HashSet<string> requestedScopes, string clientIdentifier, DateTime issuedUtc, string username) { + // If db precision exceeds token time precision (which is common), the following query would + // often disregard a token that is minted immediately after the authorization record is stored in the db. + // To compensate for this, we'll increase the timestamp on the token's issue date by 1 second. + issuedUtc += TimeSpan.FromSeconds(1); + var grantedScopeStrings = from auth in MvcApplication.DataContext.ClientAuthorizations + where + auth.Client.ClientIdentifier == clientIdentifier && + auth.CreatedOnUtc <= issuedUtc && + (!auth.ExpirationDateUtc.HasValue || auth.ExpirationDateUtc.Value >= DateTime.UtcNow) && + auth.User.OpenIDClaimedIdentifier == username + select auth.Scope; + + if (!grantedScopeStrings.Any()) { + // No granted authorizations prior to the issuance of this token, so it must have been revoked. + // Even if later authorizations restore this client's ability to call in, we can't allow + // access tokens issued before the re-authorization because the revoked authorization should + // effectively and permanently revoke all access and refresh tokens. + return false; + } + + var grantedScopes = new HashSet<string>(OAuthUtilities.ScopeStringComparer); + foreach (string scope in grantedScopeStrings) { + grantedScopes.UnionWith(OAuthUtilities.SplitScopes(scope)); + } + + return requestedScopes.IsSubsetOf(grantedScopes); + } + } +}
\ No newline at end of file |