/** scrypt Password-Based Key-Derivation Function. * * @param {bitArray|String} password The password. * @param {bitArray|String} salt The salt. Should have lots of entropy. * * @param {Number} [N=16384] CPU/Memory cost parameter. * @param {Number} [r=8] Block size parameter. * @param {Number} [p=1] Parallelization parameter. * * @param {Number} [length] The length of the derived key. Defaults to the * output size of the hash function. * @param {Object} [Prff=sjcl.misc.hmac] The pseudorandom function family. * * @return {bitArray} The derived key. */ sjcl.misc.scrypt = function (password, salt, N, r, p, length, Prff) { var SIZE_MAX = Math.pow(2, 32) - 1, self = sjcl.misc.scrypt; N = N || 16384; r = r || 8; p = p || 1; if (r * p >= Math.pow(2, 30)) { throw sjcl.exception.invalid("The parameters r, p must satisfy r * p < 2^30"); } if ((N < 2) || (N & (N - 1) != 0)) { throw sjcl.exception.invalid("The parameter N must be a power of 2."); } if (N > SIZE_MAX / 128 / r) { throw sjcl.exception.invalid("N too big."); } if (r > SIZE_MAX / 128 / p) { throw sjcl.exception.invalid("r too big."); } var blocks = sjcl.misc.pbkdf2(password, salt, 1, p * 128 * r * 8, Prff), len = blocks.length / p; self.reverse(blocks); for (var i = 0; i < p; i++) { var block = blocks.slice(i * len, (i + 1) * len); self.blockcopy(self.ROMix(block, N), 0, blocks, i * len); } self.reverse(blocks); return sjcl.misc.pbkdf2(password, blocks, 1, length, Prff); }; sjcl.misc.scrypt.salsa20Core = function (word, rounds) { var R = function(a, b) { return (a << b) | (a >>> (32 - b)); }; var x = word.slice(0); for (var i = rounds; i > 0; i -= 2) { x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); } for (i = 0; i < 16; i++) word[i] = x[i]+word[i]; }; sjcl.misc.scrypt.blockMix = function(blocks) { var X = blocks.slice(-16), out = [], len = blocks.length / 16, self = sjcl.misc.scrypt; for (var i = 0; i < len; i++) { self.blockxor(blocks, 16 * i, X, 0, 16); self.salsa20Core(X, 8); if ((i & 1) == 0) { self.blockcopy(X, 0, out, 8 * i); } else { self.blockcopy(X, 0, out, 8 * (i^1 + len)); } } return out; }; sjcl.misc.scrypt.ROMix = function(block, N) { var X = block.slice(0), V = [], self = sjcl.misc.scrypt; for (var i = 0; i < N; i++) { V.push(X.slice(0)); X = self.blockMix(X); } for (i = 0; i < N; i++) { var j = X[X.length - 16] & (N - 1); self.blockxor(V[j], 0, X, 0); X = self.blockMix(X); } return X; }; sjcl.misc.scrypt.reverse = function (words) { // Converts Big <-> Little Endian words for (var i in words) { var out = words[i] & 0xFF; out = (out << 8) | (words[i] >>> 8) & 0xFF; out = (out << 8) | (words[i] >>> 16) & 0xFF; out = (out << 8) | (words[i] >>> 24) & 0xFF; words[i] = out; } }; sjcl.misc.scrypt.blockcopy = function (S, Si, D, Di, len) { var i; len = len || (S.length - Si); for (i = 0; i < len; i++) D[Di + i] = S[Si + i] | 0; }; sjcl.misc.scrypt.blockxor = function(S, Si, D, Di, len) { var i; len = len || (S.length - Si); for (i = 0; i < len; i++) D[Di + i] = (D[Di + i] ^ S[Si + i]) | 0; };