blob: b316b28c0d0e6f6a222febeec9c5c0749aed5714 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
//
// DHKeyGeneration.cs: Defines the different key generation methods.
//
// Author:
// Pieter Philippaerts (Pieter@mentalis.org)
//
// (C) 2003 The Mentalis.org Team (http://www.mentalis.org/)
//
using System;
namespace Org.Mentalis.Security.Cryptography {
/// <summary>
/// Defines the different Diffie-Hellman key generation methods.
/// </summary>
internal enum DHKeyGeneration {
/*
/// <summary>
/// [TODO] you first randomly select a prime Q of size 160 bits, then choose P randomly among numbers like
/// Q*R+1 with R random. Then you go along with finding a generator G which has order exactly Q. The private
/// key X is then a number modulo Q.
/// [FIPS 186-2-Change1 -- http://csrc.nist.gov/publications/fips/]
/// </summary>
// see RFC2631 [http://www.faqs.org/rfcs/rfc2631.html]
DSA,*/
/// <summary>
/// Returns dynamically generated values for P and G. Unlike the Sophie Germain or DSA key generation methods,
/// this method does not ensure that the selected prime offers an adequate security level.
/// </summary>
Random,
/*
/// <summary>
/// Returns dynamically generated values for P and G. P is a Sophie Germain prime, which has some interesting
/// security features when used with Diffie Hellman.
/// </summary>
SophieGermain,*/
/// <summary>
/// Returns values for P and G that are hard coded in this library. Contrary to what your intuition may tell you,
/// using these hard coded values is perfectly safe.
/// The values of the P and G parameters are taken from 'The OAKLEY Key Determination Protocol' [RFC2412].
/// This is the prefered key generation method, because it is very fast and very safe.
/// Because this method uses fixed values for the P and G parameters, not all bit sizes are supported.
/// The current implementation supports bit sizes of 768, 1024 and 1536.
/// </summary>
Static
}
}
|