// // // Mono.Math.Prime.PrimalityTests.cs - Test for primality // // Authors: // Ben Maurer // // Copyright (c) 2003 Ben Maurer. All rights reserved // using System; using System.Security.Cryptography; namespace Mono.Math.Prime { //[CLSCompliant(false)] internal delegate bool PrimalityTest (BigInteger bi, ConfidenceFactor confidence); //[CLSCompliant(false)] internal sealed class PrimalityTests { #region SPP Test private static int GetSPPRounds (BigInteger bi, ConfidenceFactor confidence) { int bc = bi.bitCount(); int Rounds; // Data from HAC, 4.49 if (bc <= 100 ) Rounds = 27; else if (bc <= 150 ) Rounds = 18; else if (bc <= 200 ) Rounds = 15; else if (bc <= 250 ) Rounds = 12; else if (bc <= 300 ) Rounds = 9; else if (bc <= 350 ) Rounds = 8; else if (bc <= 400 ) Rounds = 7; else if (bc <= 500 ) Rounds = 6; else if (bc <= 600 ) Rounds = 5; else if (bc <= 800 ) Rounds = 4; else if (bc <= 1250) Rounds = 3; else Rounds = 2; switch (confidence) { case ConfidenceFactor.ExtraLow: Rounds >>= 2; return Rounds != 0 ? Rounds : 1; case ConfidenceFactor.Low: Rounds >>= 1; return Rounds != 0 ? Rounds : 1; case ConfidenceFactor.Medium: return Rounds; case ConfidenceFactor.High: return Rounds <<= 1; case ConfidenceFactor.ExtraHigh: return Rounds <<= 2; case ConfidenceFactor.Provable: throw new Exception ("The Rabin-Miller test can not be executed in a way such that its results are provable"); default: throw new ArgumentOutOfRangeException ("confidence"); } } /// /// Probabilistic prime test based on Rabin-Miller's test /// /// /// /// The number to test. /// /// /// /// /// The number of chosen bases. The test has at least a /// 1/4^confidence chance of falsely returning True. /// /// /// /// /// True if "this" is a strong pseudoprime to randomly chosen bases. /// /// /// False if "this" is definitely NOT prime. /// /// public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence) { int Rounds = GetSPPRounds (bi, confidence); // calculate values of s and t BigInteger p_sub1 = bi - 1; int s = p_sub1.LowestSetBit (); BigInteger t = p_sub1 >> s; int bits = bi.bitCount (); BigInteger a = null; RandomNumberGenerator rng = RandomNumberGenerator.Create (); BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi); for (int round = 0; round < Rounds; round++) { while (true) { // generate a < n a = BigInteger.genRandom (bits, rng); // make sure "a" is not 0 if (a > 1 && a < bi) break; } if (a.gcd (bi) != 1) return false; BigInteger b = mr.Pow (a, t); if (b == 1) continue; // a^t mod p = 1 bool result = false; for (int j = 0; j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % bi; } if (result == false) return false; } return true; } public static bool SmallPrimeSppTest (BigInteger bi, ConfidenceFactor confidence) { int Rounds = GetSPPRounds (bi, confidence); // calculate values of s and t BigInteger p_sub1 = bi - 1; int s = p_sub1.LowestSetBit (); BigInteger t = p_sub1 >> s; BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi); for (int round = 0; round < Rounds; round++) { BigInteger b = mr.Pow (BigInteger.smallPrimes [round], t); if (b == 1) continue; // a^t mod p = 1 bool result = false; for (int j = 0; j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % bi; } if (result == false) return false; } return true; } #endregion // TODO: Implement the Lucus test // TODO: Implement other new primality tests // TODO: Implement primality proving } }